g e

£ INSTITUTE FOR SPACE STUDIES _

STELLAR DYNAMICS IN A DISCRETE PHASE SPACE

R. H. Miller
K, H. Prendergast

(NATA-TM-10572605) STELLAK DYJAMTCS IN A

DTSERETE Pace eoan e NOO-T7075
DISCRITT PHALD SPACE (NASA) 34 p omTeTsT

unclus
NGII0 02774058

GODDARD SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

STELLAR DYNAMICS IN A DISCRETE PHASE SPACE

R. H. Miller
University of Chicago
and
Institute for Space Studies

7 Goddard Space Flight Center, NASA
New York, New York

and

K. H. Prendergast

Columbiag University

ABSTRACT

A new approach to numerical experiments with self-gravitating
stellar dynamical systems is described that permits enough bodies to be
included to make the problem interesting. The forces are obtained by
solving the Poisson equation at each integration step. The method incor-
porates the essential physical features of collision-free systems exactly
and appears to be adaptable to a wide class of initial value or self-
consistency problems. Stellar systems of 120 000 particles have been

followed; preliminary results are given.

I. A GAME

Consider the following game. A pbint is made to hop about over
a two-dimensional lattice according to these rules:

(1) It may reside only at locations whose coordinates (x,u) are
integers.

(2) It may hop from one allowed location to another, but must
always alternate a hop in which only x changes with one in which only
u changes. Let the value of x immediately following the nth step be

(n) (n)

x ', the value of u following its next change after x

be u('n+1/2),

was reached

(n+l1)

(3) The value of x is given by

Lot (0 (n+1/2) (1)

-2~

(4) There is a table that gives the rule for changing u according
to the present value of x. Let the value read out of this table following

(n) (n+1/2)

the nth step be { Then the value of u is given by

u(n+l/2) - u(n—l/Z) + f(n) . (2)

The pair of moves is a complete step.
As an example of this game (Fig. 1) the particle might start from

(0) u(-1/2) (0) _

location '"'a" with x =4 2, = 0; the table of f's gives f = - 2 80

u(l/z) = -2, as shown at b in Fig. 1. The game, played according to
these rules, fills out Table 1. The successive locations occupied by the
point (at values of n just following the indicated sghifts) are shown in
Figure 1. In this case, the point is back at the same location in the
lattice at n = 6. Thereafter it would endlessly repeat the same set of
(x,u) values. The loop in Figure 1 connects those locations occupied
just after the shift of the x value (n = integer +; locations a, c, e, g, i, k, m).
Suppose there were many points in such a diagram, each hopping
about the lattice according to the stated rules, without regard for the
other points. Then each point on a given row of u = const. would be
moved the same distance (to the right by the value of u) at integer values
of n as shown in Figure 2(a). The subsequent moves at half-odd integer

values of n would be upward along a column of fixed x by the amount

specified by f. (Figure 2(b)).

-3-

Irrespective of the nature of the table of f-values (even if the table
is changed for each n), it is easy to see that (1) The contents of a cell are
transferred from one location to another as a unit. Thus, the contents of
two cells cannot come to occupy the same location at a later time, nor can
the contents of one cell split to occupy two cells. (2) If the process were
run backward after n steps (taking care properly to reverse the sequence

of operations), all points would return to their original locations.
II. RELATION TO DYNAMICS

The game just described bears several suggestive resemblances to
dynamics. The lattice is like a discrete phase space (distinctions about
evaluating x's and u's at different n's aside) for a one-dimensional problem
if the identifications x+— corrdinate, u < velocity, f «—— force per unit
mass, n —— time are made. The property that occupants of a lattice
location stay together is reminiscent of the Liouville theorem in the phase-
space. This system describes the reversible flow of an incompressible fluid
in the (discrete) phase space. Since the collision-free Boltzmann equation
describes this kind of motion in phase space, the game approximates to
solutions of that equation.

Equations (1) and (2) are a finite-difference scheme for integrating
X =u; u = f, if the value of the time-step be incorporated into the definitions
of u and of f to make the entire systermn dimensionally compatible. The
game is like any other technique for numerical integration in that there are
higher-order terms ignored in this finite-difference scheme; these will be

discussed later.

-4-

The game contains the physical features of the phase-space description
exactly. It is interesting to have an approximation method that possesses exact
integrals of its own. The game carries out an approximate integration without
doing arithmetic. The game clearly can be generalized to more dimensions.

The terms ignored in the finite-difference scheme are of the third
order in the time-step (this is the object of alternating the velocity and
coordinate moves). The assignment of discrete values to the variables
corresponds to roundoff while the ignored terms give rise to a truncation
error. Details on a scale not substantially larger than a cell size are
obviously not to be trusted. Although we have used some more elaborate
methods to study this question (such as considering the mapping of a space
at one time onto a space a time-step later), the essential features may be
easily appreciated by requiring that the truncation error (in the worst case)
be nearly the same as the roundoff error; that there be no ambiguity about
which location a point should be placed in after a complete step. Again the
essential features are included in the one-diﬁensional formulation. A

Taylor series development of x and u as functions of the time leads to:

L1z e
L= (3)
I]ma.x
4 af a%| -1
< —_ ot 4
T Ifdx-l‘u dx maxlzsL (4)

where T is the time step, L is the distance between successive lattice

points in x (the corresponding interval in u is L/T), the derivatives

-5-

are to be understood as appropriate to the physical system being mimicked,
and the quantities marked as absolute values with a subscript ''max'' are to
be worst cases. All quantities (except £) appearing in these equations are
dimensioned physical variables. If these relations are satisfied, then the
integer location of the point after a complete step will be within a distance
€ L (or g L/T) of the location that would be occupied by a particle that
moved exactly according to the mechanical equations of motion. Typically,
these two relations give similar bounds on the size of the time-step. For
reasons of economy and because of the discrete nature of the variables, T
should be as large as possible consistent with these relations.

There is no feature of the quantization that affects the stability of the
game as a finite-difference approximation to an initial-value problem.

This is intuitively evident, particularly on the basis of another representation
of the system that will be described in the next paragraph. On more formal
grounds, let the time step vary and let L. vary with it in such a way that the
ration L/T is constant. This has the effect (as T gets smaller)of refining
the lattice by putting more and more points in it. The problem is properly
posed, and the approximation is consistent and satisfies the sufficient con-
ditions for stability of Lax and Richtmyer (1956).

In this connection, it is instructive to consider another representation
of an n-body system that is useful for certain fundamental properties. The
¥ -space (bn-dimensional for a 3-dimensional problem) might also be
quantized. An n-body system would occupy some single location in the

6én-dimensional lattice. The 6n-dimensional lattice can be mapped onto a

-6-

one-dimensional array in which the representation of the system is now

a vector with all elements being zero except for one that describes the
n-body system. When the system advances through a time-step, the
phase point will move to a new location in the ‘Y -space, where it will

be represented by a new vector all of whose elements, save one, are zero.
That one element is again unity. Since the motion in the Y -space is
completely determined (for a classical system), the transformation of

one of these vectors into the other may be represented by a square matrix.
Because the motion is determined and time-reversible, the transformation
matrix contains just one non-zero element in each row and column. The
non-zero elements must be unity. The matrix does not depend upon the
system configuration. The result of two time-steps must be capable of
representation by a transformation matrix having the same properties.

It is clear, since the matrix is finite (for bounded motion), that it is an
element of a cyclic group. The order of the group is the number of time
steps in a Poincaré recurrence time. This representation makes it

intuitively obvious that the game is stable as an initial value problem.

II1. MACHINE CALCULATION

The game was designed to fit easily into the basic operations of a
digital computer. Programs have been written to play the game, as a
representation of a stellar dynamical system. The first, written for
the Maniac III computer at the University of Chicago, used a two-dimensional

system (4-dimensional phase space) with 48 x 48 cells in configuration space

-7-

and 15 x 15 in veklocity space and was tried with a single particle in a
"harmonic oscillator' force field to explore the programming problems.
Later, the full stellar dynamical problem was coded for the IBM 360/75
at the Goddard Institute for Space Studies in New York. The properties
of this machine that make it well suited to this problem are 1) large
memory (4 million ""bytes' of !large core store' = 22'5 bits, plus 1 million
"bytes'' of fast working storage) and 2) a fast processor. A two-dimensional
problem can fit nicely into this store by dividing it into 128 x 128 cells in
configuration space, with a 45 x 45 velocity space attached to each con-
figuration space cell. With this selection, the large core is 2025/2048 filled.

The configuration space is made periodic--a particle leaving one boundary
is replaced by one entering at the opposite side with the same velocity. A
similar recipe in velocity space did not seem feasible; instead, the velocity
space was truncated--any particle that acquires |u| or |v]| > 23 is said to
have "'spilled'" and is removed from the phase space array. A running
tally of spills is kept.

The system described so far would work for any forces; the forces
of interest for stellar dynamics are self-gravitational. Normally, n-body
integrations proceed by calculating the resultant force on one particle due
to all the others--the pair interaction. This becomes expensive when many
particles are involved.

In our calculation, the forces due to self-gravitation are calculated
at each step by solving the Poisson equation. Fourier-transform me thods

are used to reduce the number of calculations from N4 (where N is the

-8-

number of permitted locations in a periodic length along one configuration
direction, N = 128 in this problem) to a multiple of N3. The calculation

is reduced by using even and odd parts. Further reductions of the Fourier-
transformation process are possible (Cooley and Tukey, 1965); because the
force calculation requires a small part of the step time, further economies
cannot produce a significant reduction in computation time.

There is a difficulty in the Fourier transform method that caused us
some trouble. The periodic configuration space permits Fourier series to
be used. Only as many Fourier components need be used as there are
lattice points along an axis in the configuration space (128 here). However,
truncation of the Fourier series for the density corresponds to a certain
density distribution that may be significantly non-zero away from the integer
lattice locations. These nearby bumps in the density distribution may pro-
duce a greater force than that due to the mass that supposedly generated the
density distribution. When we used analytically derived coefficients the
forces calculated showed ''diffraction patterns'' that were manifestly incorrect.
The convolution theorem in Fourier transforms may be used to generate the
required force on each lattice-point directly by Fourier transforming the
force-fiéld about a point mass at the origin. The numerical accuracy is
poorer but adequate for the game since the forces must take on integer
values, and'large values of the force cannot be permitted (Eq's 3 and 4).

In the present problem, the forces are restricted to have |£] < 8.
It is the fact that the forces need not be determined to high precision,

and can thus be obtained from the Poisson equation at a fairly small number

-9-
of locations that lets the game handle very large numbers of particles.
The time required for the force calculation is independent of the number
of particles. It is important, however, that the force calculation take
proper account of large numbers of particles at substantial distances.
This is done by calculating in floating point, and only truncating to integer
values at the very last step. The force calculation is the only part of
the '"integration'' that requires arithmetic.

Essentially any desired force-law can be built into this problem by
selecting the force field to be Fourier transformed. We use a force
between pairs of particles derivable from a potential -GM/(a2+x2+y2) 1/2.
Periodicity is taken into account in the configuration space by including
the contribution to the forces from the periodically repeated mass distri-
butions; the gravitational field arising from the mean density is suppressed.
The inclusion of a # 0 is equivalent to considering mass distributions that
extend over a few neighboring lattice locations. Among the difficulties
that are avoided by using a # 0, are for example, close encounters and
the question of energy conservation. The potential energy of two particles
on the same lattice-point is -GMZ/a; if a — 0, this becomes infinite,
and our system could not even approximate to energy conservation or to
the virial theorem without an ad hoc treatment of the potential energy of
coincident particles. Since the system cannot relax in the usual sense
(through the action of the colligsion term in the Boltzmann equation), it is

not mandatory that we treat close encounters correctly. Furthermore,

the Poisson equation--and the Boltzmann equation--both imply some smoothing

-10-

of the density distribution of point particles. We plan to experiment with
different values of a but have not yet done so.

The program, as it now runs, makes about 8 complete steps per
hour. About half of the step time is consumed in recording the results.

At each step, the entire phase space is copied onto magnetic tape; about
five time steps fill a reel of tape. Post-run summaries can be made from
the tape copies, but with no need to re-run the problem. The full force
calculation, to produce the integer values of the x and y components of the
force, each on the 128 x 128 grid, requires about 50 seconds. This is

not particularly fast compared to some figures that have been quoted in the
literature (Hockney, 1964).

At each integration step, the density, the vector moment of velocity,
the velocity ellipse, and the vector force field are plotted for each relevant
configuration space cell. There is much more information available--and
it is fairly easy to construct subprograms that can form the required
quantities from the tape copies of the phase space. Some of the ﬁrpt
quantities that we expect to form include the phase density, {(€,7J, ¢),
as well as a decomposition of the motions into wave-like and convective
parts.

Rather than removing the ''spills'' from the problem as we have,
it would be possible to keep track of them and to integrate their orbits
more carefully. The small number of ''spills" obtained in the examples
run so far indicates that our present treatment presents no difficulty for

reasonably scaled problems.

~-11-

Other boundary conditions could easily be substituted for those we
use. The system might have reflecting barriers in velocity space, or in
configuration space, or the periodic condition in configuration space might
be dropped, treating particles that reach the configuration boundary as
"escapes'', just as those that have reached the velocity boundary are
spills.

Relaxation could be incorporated into the problem by admitting
scatterings with a random property. This might be done in any of several
ways, but one simple way would be to rearrange some of the velocities of
particles in a given configuration space cell, in a random way. This can
be done in a manner that will conserve the physical integrals (energy,
momentum) to within the accuracy allowed by the admissible velocity
values.

The game might be played using different storage representations.
The one chosen seems well suited to a Fermi gas, where there is an
a priori exclusion to prevent more than one particle per phase space cell,
but stellar problems are realistic only if the density is so low that the
distortion caused by limiting to one particle per phase cell is negligible.
With the present 33 million phase space cells, we feel comfortable inserting
105 - 106 particles. We considered partitioning the memory in such a way
as to permit several bits to represent each cell--an 8-bit ''byte' being a
reasonable unit. Then the extra bits might represent some attribute of the
phase space cell--different masses, if only one particle per cell is permitted,

or different numbers of particles. We felt that finer-grained treatment of

-12-~
larger numbers of equal mass particles would be more informative, and
designed the program accordingly. Another memory allocation that has
many desirable properties for this problem is to use list storage; a scheme |
that uses all available storage fairly well, but which encounters a certain

storage and processor overhead.
1IVv. PRELIMINARY RESULTS

So far, we have tried several problems, all of which are indicated
in Table 2. Because the program is new, new results are coming rapidly,
and Table 2 only indicates the situation at a certain date. Each problem run
suggests several new ones, and each way of summarizing the results raises
questions :that require new summaries. We hope to prepare more detailed
reports of the results and of the very interesting physical implications,
but for the present must restrict ourselves to a qualitative description of
the results, particularly as they reflect upon the validity of the approximation.
Scaling the problem is the most delicate part of starting a run with a
new set of initial conditions; a set of initial conditions for 105 - 106 particles
requires some care. Internal motions and a velocity dispersion must be
supplied for each configuration space point. Normally almost any initial
condition is pathological, and changes quickly as the integration proceeds;
there seems to be little point either in selecting bizarre initial conditions
or in avoiding rapid changes through the use of stationary self-consistent
models. The quantities that may be specified as the initial conditions are

(1) the value of GM, (2) the number of particles in a configuration space

-13-

cell, and (3) the distribution of those particles in velocity space to

represent the desired mean velocity and velocity dispersions. Effectively,

the choices of GM and of the number of particles in a configuration space

cell (G) sets the time-scale; the value of GP that would correspond to a given
set of conditions is essentially GM o /a, where a is the quantity that

appears in the force calculation. We find it most convenient to set the adjustable
parameters empirically. The process of scaling the problem starts with a pro-
jection of the desired model onto configuration space followed by a calculation
of the resulting forces at every lattice point. The constant GM is chosen to
yield a greatest value for a force component of about 3, and internal

motions are chosen according to some simple pattern approximately to

balance the gravitational forees. A machine program is then written to

load the phase space array, and checked separately before being used with

the main integration routine.

The first problem run was the ''quiet circle." It has a very high degree
of symmetry--exact fourfold symmetry in the initial condition. The retention
of the exact fourfold symmetry is a valuable check on the routine. At 25
steps, the fourfold symmetry is still exact. Somewhere, by 60 steps,
different rounding to integer values in the force calculation has lost some
of the symmetry--it now shows a twofold symmetry. This means that in-
accuracies of about 10_6 - 10“8 are appearing in our numerical processes,
and that the calculation preserves the exact integrals of the approximation to
a satisfactory degree. (The spilling of a number of particles not divisible

by 4 shows that the symmetry was lost somewhere along the line). Another

-14-

check on the integration process is by comparing the results (as number-
densities projected onto the configuration space) between the ''quiet'' and
'""noisy'' cases, the '"noise'" being a perturbation in the velocity space.
These problems, in both cases where comparisons could be made, remained
reassuringly similar out to about 18-20 integration steps. In Table 2, the
noise is indicated by the + R term in the <velocity> entry; R is + 1, 0, or -1
with equal probability, and is produced by a pseudo-random number generator.

These syst‘ems feel the presence of identical systems repeated over the
periodic lattice; they tend to stretch out preferentially toward their nearest
neighbors. We could remove the explicit neighbor-interaction (with the
Fourier series force calculation, there will always be effects due to
the periodicity present), which should reduce this effect. This is one of
many things we hope to try sometime. The rectangular systems show the
neighbor interaction especially strongly.

The circle problems show an interesting initial collapse, followed
by the development of a hole in the center. Later, the system collapses
again, only to develop the hole anew--although with a much more complex
structure. The central condensation is greatest at about 6 steps and again
at about 18 steps. The hole is most pronounced at about 12 steps and opens
again at about 24 steps. All the time, clear differential rotations persist,
and the background around the central mass fills up with evaporated par-
ticles. ''Spiral" patterns develop, but are short-lived. After 40-50 steps,
the systems settle down to something that looks like a steady state, with

very little further development. About half of the particles are in the central

-15-

mass, and the other half filling the general background. Densities
(number of particles in a cell of the configuration space) run to about
170 near the center, and drop off to about 4-5 in the outer region.

The central peak is about 10-15 cells wide (diameter at half maximum).
In the '"'noisy circle', this final state appears to be a rotating ellipse,
while the symmetry of the '"quiet circle'" forces a circular shape. The
fourfold symmetry forced by the neighbors is lost in the noisy circle
problem after about 20-30 steps.

The rectangles tend to build bridges to the next periodic cell. The
fast rectangle rotated fast enough that it tore itself into two pieces which
fly about and collide with one another several times in the 51 steps run.
The pieces interpenetrate.

The '"Jeans problem' was run to see whether we could mimic the
""Jeans instability' with this system. The force constant, GM, was set
very large to assure that there would be nonzero forces somewhere in
the system. The initial state was loaded by a pseudo-random number
generator. Because the force was so large, spills followed as soon as
a pattern developed. In about 3 steps the pattern is very well developed,
at 7 steps the valleys are beginning to fill in, but by then 1/10 of the initial
particles have spilled. The wavelength of the pattern that built up was
about one full wave per priodic cell; the Jeans length for this problem is
about 8-16 small cells (1/16 to 1/8 of a periodic éell). We cannot make

quantitative comparisons with the '"Jeans instability' at this time because

-16-

our time step was too large. We hope to carry out further experiments
with this problem.

The approximation conserves its integrals very well, and appears
to conserve the usual integrals of the mechanical system being mimicked
better than we had expected. Because the game matches the physics of
collision-free motion exactly, the development of the systems is probably
a reasonably faithful representation of a physical system. Weare very
pleased with the evident good behavior of the game, and anticipate a fruitful
application to stellar dynamical problems.

Although the game was devised as a method of attacking stellar
dynamical problems, it is perhaps even better suited to other kinds of
problems. The representation used really describes a Fermi gas, and it
is natural to think of applying this technique to crystal physics. Applicé.tions
to hydrodynamics are evident. Another possible application is to turbulence
theory, representing a wave-number space. In all of these problems,
meaningful results require the introduction of interactions between "particles',
fixed force fields, and other features that are easy to do, but which we have
not yet done.

The work reported here was started ét the Institute for Computer
Research at the University of Chicago, where it was supported by the
U. S. Atomic Energy Commission under contractAT(11-1)-614. The work
was completed while one of us (R. H. M.) held a National Research Council
Senior Postdoctoral Resident Research Associateship supported by the

National Aeronautics and Space Administration. The hospitality of

-17-

Dr. Robert Jastrow and of the Goddard Institute for Space Studies is
gratefully acknowledged. Invaluable programming assistance was pro-
vided by Naomi Alton in Chicago and by Marian Sackrowitz in New

York.

APPENDIX T

SCALING TO PHYSICAL UNITS

According to the scaling chosen, a calculated system can
represent any of a number of physical systems, There are three physical
units to be determined, but the requirement that the gravitational
constant take on the correct physical value limits the free choice to
two, In principle, any two physical quantities (of different dimensions)
might be chosen, but it appears that selecting the density and velocity
units may be most convenient,

The scaling of physical units is determined in the initial con-
ditions. These usually consist of a constant number of particles per
configuration space cell (¢) inside some boundary, There is a numer-
ical coefficient y in the force calculation (Y is effectively GM made
dimensionless); let K be the largest numerical value that results from

a force calculation with both y and o set to unity, Then y is chosen

so that Y&~ K« Fmax’ where Fmax is the largest value of the force
to be allowed in the initial condition (about 3),
The physical time step is determined by the density in the
. . ‘o s 7 1/2
corresponding physical system: itis 1,5 x10 (¥ & / f)

in years, with the density expressed in solar masses per cubic parsec,

If the unit of velocity be v (km/sec), then the units of length (the

distance between successive lattice points in configuration space) are
L = 15(\‘ o)‘/2' 'lJ’/FVz parsecs, and Yn = (3400/q) ¥)3/2 U'3/P V.
solar masses, The mass WM is the mass of one of the ''particles'
that is moved about in the game. It may be regarded as an aggregate
of stars, rather than as a single star, for some purposes.

As an example, the rectangle and circle problems have Y o =1;
they may be scaled to the solar neighborhood taking == 0.15 M@/pc3,
so the time unit is 3,9 x 107 years. Sixty steps of evolution then repre-
sent about 2, 5 x 109 years. Making the largest circular velocity
(10 units) match the rotational velocity in the solar neighborhood (250 km/sec)
sets the length L at about 1000 pc. The 37 masses initially in each con-
figuration space cell are each of about 4 x 106 MQ. and the total of 120 000

11

particles represent 5 x 100" M The periodic length is about 125 kpc,

O.

and the rms peculiar velocities (2.4 units) are about 60 km/sec.

Az—1

APPENDIX I

THE PROGRAMS

For the most part, program details are available from internal
documentation, However, the general structure of the program, and
of its principal parts, may not be evident from the listixigs. This appendix
is intended to give an overall picture of the program organization to
facilitate reading of the program listings.

The program is basically a loop consisting of three main parts
(Figure Al), those in which (1) the particles are shifted along a coordinate
direction at fixed velocity (Figure 2a; labelled '"advance coordinates!''
in Figure Al), (2) the forces are calculated for each configuration space
lattice point, and (3) the particles are shifted along a velocity direction
at fixed coordinate (Figure 2b; labelled '"advance velocities' in Figure Al).
The stage at which the phase array is copied onto tape is the stage at
which all summaries are made, It is important to note. that this is done
after the coordinates are advanced, as the interpretation of velocity
plots requires knowing that the plot labelled ''n'" refers to velocities
at '"n-1/2", The step number is augmented after the '"copy on tape'' stage.
The entry point is so located that the process can be re-started from a tape
copy of the phase space,

Two arrays dominate the discussion, PHASE is the array of bits
that represents the phase space., It can be declared in FORTRAN as
PHASE (4,128,2025). A bit belonging to the coordinates x, y,u, v will
be located at word (word=32 bits) address

BASE + x/32 + 4%y + (4*128) *u + (4*128%45) *v

AL~ C

(BASE includes the obvious subtraction to avoid the FORTRAN start from
1 indexing). The location corresponding to given x is the bit consecutively
numbered from the x=1 position, The divide is in the sense of an integer
divide, CONFIG is a 128%128 array of integers that contains the projection
of PHASE onto configuration space. We use the convention throughout
with 2-index arrays referring to coordinates (CONFIG, FX, FY) that
the first index represents x, the second represents y, FX and FY are
integer arrays that contain the values of the force components to be used
at each (x, y) point.

The program breaks into two parts: that necessary to establish
the initial state of the running routines, which is run only once to get the
process started, and the main integration loop. A flow chart of the startup
is just a straight line proceeding through the operations. A list of them,
performed iﬁ sequence, follows:
SPILL =0 (SPILL is the tally of spills)

Clear PHASE
and CONFIG
arrays

CALL CONSTR (MCOS, MSIN, MFOR, FX, CONST)

(CONSTR is a routine to load the arrays
MCOS (cowsines for Fourier Transform),
MSIN (sines for Fourier transform), and
MFOR (convolution coefficients) for the

force routine, with the value of GM specified
by CONST. FX = one of the force arrays, us:
as a temporary storage in the process).

CALL SETINT (PHASE, N, M)
(SETINT initializes SETONE routine; SETON]
is called by LOAD to place bits into the array
PHASE at apecified x, y,u, v values)

'CALL LOAD(CONFIG)
(LOAD generates the pattern of bits to be
set into PHASE; LLOAD calls SETONE to do th

actual loading)

A2-3

OuUTPUT At this stage, some features of the initial
state are printed and the initial phase space
array is copied onto magnetic tape, through
some special routines as well as the output
routines used at each stage of the loop. There
is no fixed output routine, .

Enter loop. The loop is shown in Figure Al.

The routines appearing in the loop are indicated in Figure Al,

As just noted, there is no fixed output routine, The principal output

functions at run time are to copy the PHASE array onto magnetic tape and to

prepare those plotter tapes that are generated at run time. Certain printed

summaries are also prepared (number of spills, step number) at this stage.

The calls and functions of the other routines are as follows. SHIFTI is

the routine that does circular bit shifts in x,y at fixed u,v. The shift

along x at fixed y,u, v is a circular shift of 128-bit objects, The shift along

y at fixed x,u, v is a relocation of 128-bit '"words'' in memory, exactly like

the circular shift, The projection of PHASE onto CONFIG is done by SHIFTI.

(Call is CALL SHIFTI). SCRBLE is the routine that rmoves bits in u, v

at fixed x,y according to FX and FY. The u,v moves are rmade simultaneously.

Moves are made in a direction opposite to the forces so that bits are always

moved into locations that have been emptied earlier in the current step.

The bit location to be moved is examined; if it is zero, the move is not

carried through, A gain in running speed is made by ‘copying the parts of

PHASE that SCRBLE is working on into fast memory., (Call is CALL SCRBLE

(PHASE, FX, FY,N, M, SPILL)).

FORCE (Call is CALL FORCE (CONFIG, FX, FY, MCOS, MSIN, MFOR)).

The force calculation is rather complicated. It proceeds by Fourier trans-

A2- 4

formations. The Fourier transform is actually a complex transformation
written in terms of sines and cosines; only those parts that contribute to
the final result are retained, The calculation is reduced by decomposition
into four parity states (the numerical coefficients that belong with this process
are absorbed into the coefficient that is used in generating the matrix MFOR),
These are each Fourier transformed by matrix-multiplication through a BAL
subroutine MTRXMY (A, B, C) that forms the 65 x 65 producé of A*B and
placed the result in C, The BAL routine is about four times faster than a
corresponding (CAI/BPS) FORTRAN routine. Since both the x and y force
component calculations proceed from the same Fourier tranformed density,
the transformed density is saved. With the parity decompositions, the borderir
rows and columns of the Fourier-transformed (or re-transformed) arrays
must be doubled, This is done in the matrix MFOR for the intermediate
(Fourier transform of density) stage, but must be done explicitly after the
re-transformation to configuration space and before the re-composition from
parity states, Bordering rows or columns that contain all zeroes because
of their parity states are not doubled., On the recombination, the force values
are rounded to integer values, and restricted to maximum values (magnitudes)
of 7. Should it become necessary to flag cases in which the force exceeds this
lirnit, this is the part of the routine in which that should be done, The sines an
cosines were stored in matrix form--although there is a great deal of redundan
because they are most rapidly available that way., The force calculation ’requir
about 50-55 seconds.

Among the auxiliary programs, two are useful before the loading to

help set the scaling (the value of CONST in the starting routine CONSTR).

Ar-5

One of these does the force calculation for a given array CONFIG, and prints
the values of the forces at each of the (16384!) lattice points as a floating
point number, with GM=1, The second takes the subroutine LOAD(CONFIG)
exactly in the form required by the main })rogram, and forms tallies of (1)
the total number of particles loaded, (2) the sum of squares of the velocities,
(3) the angular momentum about the lattice-point (64, 64) as origin, (4) the
maximum and minimum values of x,y,u, v (in the FORTRAN index convention),
and (5) the summed velocities (u-23) and (v-23) for all particles, LOAD

and SETONE take the integer values of x, y,u, v to conform to FORTRAN
indexing conventions of allowing only natural numbers; hence the range on x
and y is 1 to 128, that on u and vis 1 to 45, with uor v = 23 corresponding

to zero velocity,

Table 1.

MOVES IN THE GAME

n x u f label
-1/2

a
0 +2 -2

b
1/2 -2

C
1 0 0

d
3/2 -2

e
2 -2 +2

£
5/2 0

g
3 -2 +2

h
7/2 +2

i
4 0 0

j
9/2 +2

k
5 +2 -2

| 1

11/2 0

m
6 +2 -2

asdirie
£3100194A 4310

asdrrie
£3100719A L3I0

e ;1122 313
-uod xad ;¢

e 112> "3y
-uod xad ;¢

e :119° -3y
-uod zad ;¢

e 182 '3y
-uod xad ¢

-uod 1ad ;¢

11e (192 "3ry.

*I3}81p UOSSIOg

{wopuex-opnasdg

-012A ‘9010 J| -012A ‘@dI104 alqejreae
Aj1sua(g Ajrsua(g Atsua(g L318U9(y A31suag Lj18ua(g sjo1ld
11eo
— — - — =1al ‘In aoeds aseyd
<_AQ>+< ﬂqw <_AU>+< ﬂ<v < _aY +A~ MEV > fe AY>+ ~M~v<v z2> e i Ted apatiaed
2" 2 AN A ST < agsie nus | NPT 00T=<ya>+< n>| [:osdrpre
9[2I1D 9[OITO 9[9I1d a[2a1d 9[2J1D an:onW_Z L310019 7
o QU1
g+L/X+= A L/xe=0p xp0+="A | W N..,m+uo> 1.0
o 0 0 061 1 o |00/ T)g+="A
d+g/h-=n S/&-="n £gr0- ="n [¥+ — =N 0 suorjows
astou+Surazes 3 3 [(oot1/ .JN.un D =
T 1Ie9Ys urieays urIeays astou Z INON leuxajut =
pue 3urjejoa pue Surjejox pue 3urjejox Ie[ndIId :Ie[naaro : <£310019 A >
02+>£302- 02+>4>02- 02>4>02- 1e> "8y
0P +>X>0%- 0F>X>0%- 0b+>X>0%- | 9Z01>,4+,%X| 9Z0I>zA+,% | -u0d/g["9 = suony
SMER] S{192 s1192 | oprsur s[[e@d s{[e° -®20] $8€9T uI

puo) rentuy
utr L3rsua(g

€ 88 0 Sl L OT10I puyd 3v sirds

81 22 Is 6s 19 L uny sdajg

Jo JaqunpN

LL8 221 LL8 221 LL8 221 129 611 129 611 000 001 uSa[d13Ied,,

.ﬁo anﬂgz

€ € € € € r4 ‘JTpuo) rerjruf

.m XeN

€ € € € € € ® JO an[eA

0%/1 0v/1 ov/1 o%/1 ov/1 1 WD Jo anjep

AXSION 1IN0 ITIONVIOAY ATDYUID ATOIID WNITI0dd ANVN

ATIONVIDAY ATONVIDAY ISvd ASION 1AIND SNVACl,

MOTIS MOTIS

NNYd STTANVXI

2 HT1dV.L

REFERENCES

Cooley, J W., and Tukey, J. W., 1965 Math. Comp. ’;‘2, 297-301.
Hockney, R. W., 1965, Journ. Assoc. Comp. Mach. %, 95-113.
Lax, P.D., and Richtmyer, R.D., 1956, Comm. Pure and Appl. Math.

9, 267-293.
=

Figure 1.

Figure 2.

FIGURE CAPTIONS

Moves in an example of the game.

Systematic moves of many particles in the game. (a) the
moves in which x is changed according to the present
value of u. (b) the moves in which u is changed by the

amount of f(x).

ul

+2

+|

. ’3
o) +| +2
-
. . " [-2 -3
0 -
|
2 +
+3 +

—
"
~——
——/

=TT
=¥

2 H
—}T\./—
_/"\
/—-'
\

+
+
* +
|

. .
+3 42
+|
0

-2

Fig. 2

Figure Al, Flow chart of computer programs for the game,

Entry

t

Project;
Calculate Forces

(FORCE)

!

Advance
Velocities

(SCRBLE)

i

Advance
Coordinates

(SHIFTI)

i

Copy oanape

(OUTPUT)

rot

Exit after
whole number
of steps

Figure Al

